
https://doi.org/10.31449/inf.v43i2.2132 Informatica 43 (2019) 235–241 235 

New Re-Ranking Approach in Merging Search Results 

Vo Trung Hung  

University of Technology and Education - The University of Danang 

48 Cao Thang, Danang, Vietnam 

E-mail: vthung@ute.udn.vn, http://www.udn.vn/english 

Keywords: search engine, algorithm, merging, re-ranking, search result list  

Received: January 3, 2018 

When merging query results from various information sources or from different search engines, popular 

methods based on available documents scores or on order ranks in returned lists, its can ensure fast 

response, but results are often inconsistent. Another approach is downloading contents of top documents 

for re-indexing and re-ranking to create final ranked result list. This method guarantees better quality but 

is resource-consuming. In this paper, we compare two methods of merging search results: a) applying 

formulas to re-evaluate document based on different combinations of returned order ranks, documents 

titles and snippets; b) Top-Down Re-ranking algorithm (TDR) gradually downloads, calculates scores 

and adds top documents from each source into the final list. We propose also a new way to re-rank search 

results based on genetic programming and re-ranking learning. Experimental result shows that the 

proposed method is better than traditional methods in terms of both quality and time. 

Povzetek: V prispevkih sta primerjana dva pristopa pri združevanju zadetkov iskanja: z enačbo in z 

algoritmom TDR, nato pa je primerjana še izvirna metoda. 

1 Introduction 
In the Internet, search engines like Google, Bing, Yahoo 

provide a convenient mechanism for users to search and 

exploit information on the Web. According to statistics of 

"Surface Web" in 20171, it shows that Google indexes 

about 50 billion web pages, Bing about 5 billion pages. 

 

Figure 1: Size of the indexed webpages. 

The "Surface Web" is only about 1% of the "Deep Web" - 

which is not indexed by popular search engines. Many 

websites do not allow search engines to crawl, instead 

offering themselves a separate query system such as 

PubMed or the US Census Bureau.  

                                                           
1 http://www.worldwidewebsize.com 

However, when searching on search engines such as 

Google, Yahoo or Bing users are not satisfied for two 

reasons. Firstly, each search engine has different corpus, 

searching and ranking methods so the returned results will 

be different. Secondly, search engines now perform 

monolingual searches (search only on the corresponding 

language for search keywords), so users can not find 

webpages in other languages. 

To help users exploit the information effectively, 

there are some tools that combine search results from 

various sources. We can improve search results based on 

the available search engines by building a Meta Search 

Engines [1]. The nature of Meta Search Engines is to use 

techniques to exploit existing search engines and to 

process the results obtained from these search engines to 

generate a new search result that better matches user 

requirements. A Meta Search Engine needs to handle a 

variety of issues such as query processing, search on 

available search engines, processing returned results, re-

ranking results found, and display results for users. In this 

study, we focused solely on re-ranking the results found 

by the search engines available. 

There are two approaches to solve the problem. The 

first is to mix the search results (duplicate documents) of 

different search engines on the same information space. 

This method is often applied to "Surface Web". The 

second is to combine search results from independent 

sources (Federated Information Retrieval - FIR) [2], more 

in line with the exploitation of "Deep Web" information. 

The research and development of a combination of 

search results from multiple sources focused on three main 



236 Informatica 43 (2019) 236–241  V.T. Hung 

issues: server description, server selection, and merging 

[1]. Server description is intended to estimate general 

information about the original search server such as the 

number of documents, terms; Frequency of search results 

returned, ... Server selection is made based on the server 

description information to determine the most suitable 

server to send the query. Mixed results are the main work 

of combining search results from multiple sources, 

evaluating, rearranging documents, creating final list of 

results returned to the user. 

Merging techniques can be distinguished based on the 

types of information used for evaluating, re-ranking 

search results from sources [3]: server information search 

(total number of documents, results returned); Statistical 

information: the rank order of the document, the rating 

provided by the originator; basic information (title, 

abstract); or the content of the document itself. Research 

is aimed at improving the evaluation criteria such as 

accuracy, recall, data usage savings, response speed and 

bandwidth usage. 

The innovation in this paper is using machine learning 

techniques and basic information returned from the 

original search engine for re-ranking. We propose solution 

of sequential mixing to balance the speed and quality of 

the results. 

The rest of this paper is organized as follows. In the 

Session 2, we present an overview of re-ranking and focus 

on previous efforts on techniques of re-ranking as well as 

our analysis and remarks on pervious methods. Details of 

our proposal in using genetic programming for the re-

ranking are presented in Section 3 and the experiment is 

presented in Session 4. We conclude important points in 

Section 5. 

2 Overview on re-ranking 

2.1 Ranking and re-ranking 

In the information query, the ranking is usually done by 

calculating the score of fit between the document and the 

query, serving the goal of creating a list of documents in 

decreasing order of the score (shows the degree of 

suitability for user requirements). 

After executing the initial query and receiving the 

results from a search engine, the data can be extracted 

including the query content itself, the text list, the ranking 

points corresponding to the text (some may be hidden 

from the user), some basic content for each text, such as 

title, abstract. On an interactive system, the search is 

performed repeatedly, and the system can store and 

analyse the contents of executed queries, found 

documents, read texts, declarations or manipulations by 

users. The above information may be exploited by the 

system to re-rank the result list in a variety of ways, 

distinguished by the type of data used as using the 

information of the available search engines, rating, or 

considering to user information. 

 

Figure 2: Mix model for search results. 

Merging search results from multiple sources has the 

following process (Figure 2): The central server Sc 

receives the query from the user, sends the query to search 

servers from S1 to Sm. From each Si server, the list of Li 

contains N best results created and returned to the central 

server. Sc re-evaluates the documents based on the content 

returned from the original search servers or the content 

themselves to create the final result list returned to the 

user.  

2.2 Techniques of re-ranking 

2.2.1 Combination available rating 

The simplest method to merge ranking results is Raw-

Score, which directly uses the rankings in each of the 

original search result listings [4]. The CombSUM method 

proposed by Fox and Shaw, takes the total score of the 

document in the various search engines to determine the 

CombSUM score for a document. 

𝐶𝑜𝑚𝑏𝑆𝑈𝑀 =  ∑ 𝑠𝑐𝑜𝑟𝑒𝑖

𝑖∈𝐼𝑅 𝑆𝑒𝑟𝑣𝑒𝑟𝑠

 

with IR Servers as the set of search engines, scorei is 

the point of the document assigned by the ith search engine. 

The score assigned by a search engine can be 

normalized to a NormalizedScore score to avoid 

differences in searcher norms: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒 =  
𝑠𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒

𝑀𝑎𝑥𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒
 

with MinScore and MaxScore being the smallest and 

largest values in the score of all documents assigned by 

the search engine. 

The weakness of this method is the difference of 

search engines quality on ranking quality, scoring, 

presentation methods, ... To overcome the limitation, we 

can add a weighting for search engines. The 

WeightedCombSUM score for a document is calculated 

by the formula: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑜𝑚𝑏𝑆𝑈𝑀

=  ∑ 𝑤𝑖

𝑖∈𝐼𝑅 𝑆𝑒𝑟𝑣𝑒𝑟𝑠

× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝑖 

 



New Re-Ranking Approach in Merging Search Results Informatica 43 (2019) 235–241 237 

Here, wi is the weight assigned to the search engine i 

in the set of search engines IR Servers; NormalizedScorei 

is the normalization of being assigned by server i to the 

document as in the formula of NormalizedScore. 

Similarly, some studies [5] suggest a linear function 

combining the ratings of search engines of the form: 

𝑀(𝑑, 𝑞) =  ∑ 𝛽𝑖

𝑛

𝑖=1

× 𝑠𝑖(𝑑, 𝑞) 

Here M(d, q) is the final ranking point, si(d, q) is the 

ranking (normalized) of the search engine i, 𝛽𝑖 is the 

weight assigned to the search engine i. The limitation of 

these methods lies in the need to identify values 𝛽𝑖 by 

manual methods or based on observation of training data. 

2.2.2 Ranking order information  

The second solutions group uses ranking order 

information in the original search list. The Round Robin 

method [6] is the simplest method of mixing, which is 

performed as follows: We have the result list which is 

returned from L1, L2, ..., Lm; Firstly, we get the m first 

result as R1 from the list of Li, then take the m second 

result is R2 from the list of Li and so on. The final result of 

the mixing process is in the form of L1R1, ..., LmR1, L1R2, ..., 

LmR2, ... This is the right solution to ensure search speed 

when the source of quality information equivalent. 

Borda mixing method [7] uses expert judgment 

scores. Each expert ranked a number of c documents. For 

each expert, the top document is c, the second document 

is c-1 and so on. If there are some unrated documents, the 

remainder is divided equally among all unrated papers. 

Finally, the materials are ranked according to the total 

number of points assigned. Blending methods use useful 

ranking information in the absence of information about 

the search engine rankings. However, studies show that 

this method of mixing is not as effective as the 

combination of scores. 

The LMS method (using result Length to calculate 

Merging Score) introduces the original search server 

counting formula based on the number of returned 

documents, then identifies new points for documents by 

multiplying the server point by original point [8]. 

2.2.3 Ranking learning 

In a local search system, documents can be indexed in a 

variety of ways such as VSM, LSI, LMIR, ... The score of 

a document versus a query in different ways can be 

considered as different attributes of the document. Current 

information query systems tend to apply machine learning 

techniques to model or create ranking formulas based on 

these attributes. 

The learning process consists of two steps: training 

and testing. The training input is D consisting of the set 

{<q, d, r>}, where q is the query, d is the document 

represented by the list of attributes {f1, f2, ..., fm}, r is the 

relevancy of the document d versus the query q. The 

training step involves the construction of an F rating 

model, based on a training database that determines the 

relationship between the attributes of the document and 

the relevance of the document to the query. At the test 

step, the ranking model applied to the T-dataset is made 

up of the set {<qtest, dtest, rtest>}, the rpredict value is the dtest 

document relevancy for the qtest query. - calculated by the 

F-rating model - will be compared to the rtest value for the 

rating quality of the rating model. Data for training D and 

experimental data T are usually generated by editing the 

search results in practice, and then manually evaluated by 

experts. 

Ranking methods generally have the same approach 

by optimizing the objective function: find the maximum 

value of the gain function or find the minimum value of 

the loss function. 

Ranking techniques are divided into three groups: 

point-wise, pair-wise and list-wise [9]. With a point-wise 

approach, each training object corresponds to an assigned 

document attached to the rating value. The learning 

process involves finding a model that maps each object to 

a rating close to its actual value. The pair-wise approach 

utilizes pairs of documents that are associated with rank 

order (before or after) as training subjects. In the list-wise 

approach, the training object is itself the list of ranked 

documents corresponding to the query. 

The characteristic of the point-wise solution group is 

PRank introduced in [10] using a regression analysis. 

In the pair-wise group, they constructed the RankSVM 

ranking algorithm with the aim of minimizing bias in the 

list of sorted pairs. This method is often referred to in 

studies as a basis for comparison. Freund applies boosting 

and introduces the RankBoost algorithm [11]. The 

advantage of this approach is that it is easy to deploy and 

can run in parallel for testing. Another example is FRank 

based on the probability ranking model. 

In the ListNet method of the list-wise group, the 

document list itself is considered a training subject. The 

authors use a probability method to calculate the loss 

function for the list, which is determined by the difference 

between the expected sorting list and the correct sorting 

list. Neural network models and gradient descent are used 

in deployment algorithms to determine the ranking model. 

While the presented methods may apply to mixing 

results from multiple search engines, the ranking learning 

methods apply to the case of the search system. Kits and 

documents are indexed in different ways. According to 

Yu-Ting and colleagues [12], ranking methods with 

training data (referred to as supervised ranking) were 

evaluated more effectively than others one (may be 

considered non-supervisor ranking). 

2.2.4 Using user information 

By default, traditional web search engines perform 

keyword-based queries. However, two different users, 

with different interests, can use same keywords with 

different search goals. In order to better meet the 

individual user's search needs, the user's declaration of 

behaviour and habits of the user during the search 

operation has become a research object. personalized 

ranking results or cooperative ratings [13]. 

Personalization of rankings results in querying and 

ranking results for users based on individual user interests 

and is carried out through two processes: (1) The 



238 Informatica 43 (2019) 238–241  V.T. Hung 

information that describes the user's interest and (2) the 

data collection reasoning to predict the content is close to 

the user's desires. 

Initial data collection solutions require the user to 

disclose the information interest through the registration 

table, and the user may change this information [14]. The 

problem with this solution is that the user does not want 

to, or has difficulty in providing feedback about their 

search results as well as their concerns. Another direction, 

more popular, perform "learning", create user profiles 

through search history to classify, create groups of topics 

of interest to users with the aim of providing more 

information for the ranking. Based on the collected data, 

the authors build a model that describes and exploits 

relationships between users, queries, and Web pages, and 

serves search results matching the needs of user. In terms 

of characteristics, models may be limited to the 

exploitation of "two-way data" that exploits the user's 

interest in information topics, or "data in three directions" 

(three-way data) incorporates more information about the 

site. 

In addition to the user-identified information solution, 

a number of solutions for exploiting user group 

information, created through the analysis of the already-

searched content of the set User groups have the same 

characteristics (geographic location, occupation, interest) 

or have common search habits, such as Collaborative 

Filtering (CF). Web sites that meet a person's profile will 

be considered appropriate for others in the same group. 

Due to the sparseness of the data sparsity, the latent 

semantic indexing algorithm is widely used as the primary 

technique for data modelling to optimize the layout as well 

as volume calculation [15]. 

2.3 Remarks 

In the re-evaluation methods based on the rating of the 

original search engines, raw-score is the simplest method, 

which will compare directly the origin of the documents 

to the final result list. CombSUM is taking the total score 

of the document in the various search engines to determine 

the ranking in the final list. This score is standardized to 

avoid differences in the norms of each search engine, or to 

supplement the corresponding original server quality 

parameters in the Weighted CombSUM. 

The second solutions group uses ranking order 

information in the original search list. This is the right 

solution to ensure search speed when the source of quality 

information equivalent. 

The third solutions group uses the basic information 

(such as headings, excerpts, ...) of the original results in 

the scoring of documents. It compares the query with the 

title or footnote of the document, then applies the scoring 

formula based on ranking factors, title points, point 

lengths, lengths of title, and excerpts. In the news search 

system "News MetaSearcher" [16], in addition to the 

above factors, the time to update the document is also 

included in the rating formula. 

The fourth solutions group performs the loading of the 

entire contents of the documents present in the original 

search result listings, then uses the indexing and scoring 

mechanism at the central server to perform the sorting, re-

ordering the materials. It reviews the entire document to 

ensure a stable end result list, but takes a lot of time and 

bandwidth to load data from multiple servers. 

The methods in the two first groups rely on the 

statistical information returned from the query (score, rank 

order) to perform calculations, so ensure a quick response 

to the final ranking result. However, some of the factors 

that make the quality of the endorsements are not good: 

Firstly, the search engines have large differences in data 

size, ranking algorithms that make the scoring formula 

based only on statistical information is not really relevant; 

Second, in reality the search server usually does not 

provide information about the document review point. 

The third solutions group is usually chosen in practice 

because of its advantages in both speed and search quality 

compared to the two first groups. The final solution group 

has a stable ranking quality, but requires a lot of time for 

downloading the full content of the candidate materials as 

well as computational time for indexing and re-rating. 

From here the requirement for a solution is guaranteed 

to make the most out of the basic information from the 

return lists, on the other hand requires the content of the 

documents in the final list to be consistent with the query 

and satisfactoriness on time and bandwidth costs. 

3 Proposal solution 

3.1 Idea 

We propose a new solution to re-rank search results in 

using genetic programming. 

Genetic Programming (GP) was first introduced by 

Angeline [17], based on genetic algorithms. In GP, each 

potential solution as a function is called an individual in 

the population set. GPs operate through the loop 

mechanism: at each generation, the dominant individual 

selectivity in the population is based on the content of the 

price; Perform hybrid, mutant, and spawn operations to 

create better individuals for later generations. 

From randomness and irrelevance to the algorithmic 

principle of individual formation, in many cases genetic 

programming helps to overcome localized optimization 

errors. Although there is no assurance that the results 

identified by genetic programming are optimal, 

experimentation in different areas indicates that this result 

is generally better than the application of algorithms 

defined by the expert, in many cases, this result is close to 

the optimal solution [17].  

An important element in the implementation of 

genetic programming is the definition of the individual, on 

the basis of which the content is determined, ensuring that 

the measurement accurately determines the quality of the 

solution. In addition, the complexity of the content, the 

number of individuals in the population, the rate of 

hybridization and mutation, the number of generations to 

be tested should be well defined to balance the ability to 

create a good solution, eliminate solutions that are not 

suitable for the calculation volume and time to solve the 

problem. 



New Re-Ranking Approach in Merging Search Results Informatica 43 (2019) 235–241 239 

Previously, the practice of ranking methods was 

conducted independently, on different sets of data. This 

does not allow comparison of methods and hinders 

research. In 2007, Microsoft introduced the LETOR 

(LEARNING TO Rank) data set for the study of 

techniques in text search. In version 3.0 [18], the 

OHSUMED collection is edited from MEDLINE - a 

database of medical publications - for academic rankings. 

From the data of 106 queries, three files are created: the 

trainset contains 63 queries, the validation set contains 21 

queries, and the testing set contains 22 queries. Each file 

contains records in the following format: 

<lb> qid:<q> 1:<v1> 2:<v2> . ... 45:<v45> 

where <lb> is the value of relevance; <q> is the 

query number; <v1>, ... <v45> are values that correspond 

to the features of the documents, which are calculated on 

the basis of common rankings for search. Some examples 

of attributes used include: 

ID Formula 

1 ∑ 𝑐(𝑞𝑖 , 𝑑)𝑞𝑖∈𝑞∩𝑑  in the titles 

5 ∑ log (
𝐶

𝑑𝑓(𝑞𝑖)
)𝑞𝑖∈𝑞∩𝑑  in the titles 

11 BM25 of the title 
14 LMIR.JM of the title 

16 ∑ 𝑐(𝑞𝑖 , 𝑑)𝑞𝑖∈𝑞∩𝑑  in the compendium 

26 BM25 of the compendium 

28 LMIR.JM of the compendium 

Table 1: Example attribute of the OHSUMED collection. 

In the above formulas, qi is the query keyword ith in 

the query q, d is the document, c(qi, d) is the number of 

occurrences of qi in the document d; C is the total number 

of documents in the corpus, df(qi) is the number of 

documents containing the keyword qi. The BM25 and 

LMIR.JM scores are documented using the BM25 rating 

model and the Jelinek - Mercer smoothing language model 

[19]. 

3.2 Modelling application of genetic 

programming 

The GP application solution for rating learning is as 

following model: 

- Input 1: Training data set D with recording records 

in the form of the OHSUMED collection; 

- Input 2: Parameters Ng is the number of generations, 

Np is the number of individuals per generation, Nc is the 

hybrid speed, Nm is the speed of the mutation. 

- Output: The rank function F(q, d), which sets the 

value to a real number, corresponds to the relevance of the 

document d to the query q. 

The training process consists of five steps as follows: 

- Step 1: Randomly identify first generation 

individuals; 

- Step 2: Determine the value of the content for each 

individual; 

- Step 3: Perform hybrid and mutation operations; 

                                                           
2 http://pyevolve.sourceforge.net (access on 15/01/2016) 

- Step 4: Create a new generation and repeat steps 

from 2 to 4 until you have enough Ng; 

- Step 5: Choose the best individual result. 

Each individual (gene) is defined as a function f(q, d) 

that measures the relevance of the document to the query, 

with the following options: 

- Option 1: The linear function uses 45 attributes: 

𝑇𝐹 − 𝐴𝐹 = 𝑎1 × 𝑓1 + 𝑎2 × 𝑓2 + ⋯ + 𝑎45 × 𝑓45 

- Option 2: Linear function, using only a selective 

random attribute: 

𝑇𝐹 − 𝑅𝐹 = 𝑎𝑖1 × 𝑓𝑖1 + 𝑎𝑖2 × 𝑓𝑖2 + ⋯ + 𝑎𝑖𝑛 × 𝑓𝑖𝑛 

- Option 3: Apply function to attributes. Limit the use 

of functions x, 1/x, sin(x), log(x), and 1/(1+ex). 

𝑇𝐹 − 𝐹𝐹 = 𝑎1 × ℎ1(𝑓1) + 𝑎2 × ℎ2(𝑓2) + ⋯
+ 𝑎45 × ℎ45(𝑓45) 

- Option 4: Create a TF-GF function similar to the one 

presented in [20], but retain the evaluation of non-linear 

functions. The function is binary tree, with inner vertices 

being operators, leaf vertices are constants or variables. 

In the formulas, ai are the parameters, fi are the 

attribute values of the document, hi are the function. 

In options 1, 2 and 3, to hybridize two individuals f1(q, 

d) and f2(q, d), a random list of parameters has the same 

index of functions to be exchanged. The mutation 

operation for the individual, f(q,d), is performed by 

swapping two random parameters of the function f(q, d). 

Comparison of search and ranking solutions is usually 

based on the measures P@k, MAP, NDCG@k [20] that is 

used to determine the value of the content. Here, we test 

the fitness function corresponding to the MAP value. 

In the first two options, Ng, Np, Nc, Nm are respectively 

100, 100, 0.9, 0.1. For option 3, Ng, Np are defined as 

200,400. In option 4, Ng, Np, Nc, Nm are respectively 1000, 

100, 0.9 and 0.2. These values are determined by 

experiment. The Ng value, given in alternatives 3 and 4, is 

greater due to the complexity and diversity of individuals 

- the ranking function. 

4 Experiment 
The TF-Ranking experimental software, built on the basis 

of the PyEvolve library, was developed by Christian S. 

Perone2, which enables the development of a genetic 

algorithm for development in the Python language. 

In the OHSUMED collection, the data is divided into 

five directories, each containing the train.txt, vali.txt and 

test.txt files for training, re-evaluation, and 

experimentation. According to each directory, the training 

and experiment steps are as follows: 

- The training module reads data from train.txt for best 

pbest selection, applying the scoring function to the text in 

test.txt. 

- Microsoft's Eval-Score-3.0.pl tool is used to 

generate P@k, MAP, NDCG@k values (k = 1,2,5,100), 

evaluating the effect of the generated point function. 

For each option, the mean value for each of the P@k, 

MAP, NDCG@k scores of the five directories was taken 

as the scores for the experimental option. The 

implementation of training and experiment was done 5 



240 Informatica 43 (2019) 240–241  V.T. Hung 

times, the average value for comparison and evaluation of 

results. 

Table 2, Table 3 and Table 4 compare MAP, P@k and 

NDCG@k (with k = 1, 2, 5, 10) of the proposed solution 

against the baseline method, published in website of the 

LETOR3 assessment data set. Bold cells contain the 

highest values in the corresponding column. 

Method MAP 

Regression 0.4220 

RankSVM 0.4334 

RankBoost 0.4411 

ListNet 0.4457 

FRank 0.4439 

TF-AF 0.4456 

TF-RF 0.4467 

TF-FF 0.4468 

TF-GF 0.4427 

Table 2: Comparison of MAP values 

Method K=1 K=2 K=5 K=10 

Regression 0.4456 0.4532 0.4278 0.4110 

RankSVM 0.4958 0.4331 0.4164 0.4140 

RankBoost 0.4632 0.4504 0.4494 0.4302 

ListNet 0.5326 0.481 0.4432 0.441 

FRank 0.5300 0.5008 0.4588 0.4433 

TF-AF 0.5506 0.4789 0.4476 0.4348 

TF-RF 0.5545 0.4835 0.4633 0.4404 

TF-FF 0.5294 0.4957 0.4600 0.4437 

TF-GF 0.4997 0.4760 0.4507 0.4372 

Table 3: Comparison of NDCG@k values 

Table 4: Comparison of P@k values 

Experimental results show that the TF-AF, TF-RF 

alternatives are good. MAP, NDCG @ k and P @ k values 

outperformed the corresponding Regression, RankSVM, 

and RankBoost methods, which were equivalent and 

slightly better than the ListNet and FRank methods. The 

TF-GF method was not very good: Despite the good 

results on the training set, the results on the experimental 

set were just average, sign of overfitting. 

One-time training for 5 directories with TF-AF, TF-

TF, TF-FF, and TF-GF options takes 150 minutes, 70 

minutes, 200 minutes and 10 hours respectively on a dual-

                                                           
3
 http://research.microsoft.com/ 

CPU computer. Core 3.30 GHz, 4 GB RAM installed 

Windows 7. 

This result shows that the use of linear functions for 

ranking assures efficiency, both in terms of experimental 

quality and duration of training. 

5 Conclusion 
The paper introduces an overview on re-ranking. It 

evaluates the application of methods of mixing 

information retrieval results from multiple sources by re-

calculating the scores based on the basic information 

returned from the original search engine and proposing a 

re-ranking method. sequentially, progressively download 

the best documents to create the final result list. 

The innovation of this proposal is applying the 

machine learning method in using genetic programming. 

We experimented proposal solution on the LETOR 

experimental data set to develop a new ranking system 

with the objective of evaluating the effectiveness of this 

learning methodology. Experimental results suggest that 

the proposed method is better than traditional methods in 

terms of both quality and time. 

Our next research is to integrate this re-ranking tool in 

multi-language and cross-language search systems. The 

systems are intended to allow users to find documents in 

languages other than the language of the search keywords. 

Acknowledgement 

This research is funded by Funds for Science and 

Technology Development of the University of Danang 

under project number B2019-DN06-18. 

References 
[1] Kurt I. Munson (2000), Internet Search Engines: 

Understanding Their Design to Improve Information 

Retrieval, Journal of Library Metadata, Volume 2, 

p.p. 47-60. 

 https://doi.org/10.1300/J141v02n03_04 

[2] M. Shokouhi and L. Si (2011), Foundations and 

Trends® in Information Retrieval, Federated 

Search, Volume 5 (No. 1), p.p. 101-107. 

 https://doi.org/10.1561/1500000010 

[3] J. Callan (2002), Distributed information retrieval, 

The Information Retrieval Series: Springer, INRE, 

Volume 7, p.p. 127-150. 

 https://doi.org/10.1007/0-306-47019-5_5 

[4] S. Wu, F. Crestani, Y. Bi (2006), Evaluating Score 

Normalization Methods in Data Fusion, Information 

Retrieval Technology, Proceedings of 3rd Asia 

Information Retrieval Symposium, AIRS 2006, 

Singapore, p.p. 642-648. 

 https://doi.org/10.1007/11880592_57 

[5] W. Shengli, B. Yaxin, Z. Xiaoqin (2011), The linear 

combination data fusion method in information 

retrieval, Lecture Notes in Computer Science book 

series (LNCS, volume 6861), pp. 219–233. 

 https://doi.org/10.1007/978-3-642-23091-2_20 

Method P@1 P@2 P@5 P@10 

Regression 0.5965 0.6006 0.5337 0.4666 

RankSVM 0.5974 0.5494 0.5319 0.4864 

RankBoost 0.5576 0.5481 0.5447 0.4966 

ListNet 0.6524 0.6093 0.5502 0.4975 

FRank 0.6429 0.6195 0.5638 0.5016 

TF-AF 0.6691 0.6167 0.5499 0.4955 

TF-RF 0.6642 0.6020 0.5653 0.4954 

TF-FF 0.6619 0.6279 0.5612 0.4983 

TF-GF 0.6220 0.6058 0.5520 0.4969 



New Re-Ranking Approach in Merging Search Results Informatica 43 (2019) 235–241 241 

[6] S. Wu, S. McClean (2005), Data Fusion with 

Correlation Weights, Lecture Notes in Computer 

Science, Volume 3408/2005, p.p. 275-286. 

 https://doi.org/10.1007/978-3-540-31865-1_20 

[7] B. Xu, S. Luo, K. Sun (2012), Towards Multimodal 

Query in Web Service Search, 19th International 

Conference on Web Services, IEEE. 

 https://doi.org/10.1109/icws.2012.42 

[8] Y. Rasolofo, F. Abbaci, J. Savoy (2001), Approaches 

to collection selection and results merging for 

distributed information retrieval, CIKM'01 

Proceedings of the 10th international conference on 

Information and knowledge management, ACM, p.p. 

191 - 198. 

 https://doi.org/10.1145/502585.502618 

[9] L. Hang (2011), Learning to Rank for Information 

Retrieval and Natural Language Processing, 

Synthesis Lectures on Human Language 

Technologies, Morgan & Claypool Publishers, p.p. 

1-113. 

 https://doi.org/10.2200/s00348ed1v01y201104hlt012  

[10] C. Koby, S. Yoram (2002), Pranking with Ranking, 

Advances in Neural Information Processing Systems 

14, Volume 14, p.p. 641-647. 

 https://doi.org/10.7551/mitpress/1120.003.0087 

[11] M.R. Yousefi, T.M. Breuel (2012), Gated Boosting: 

Efficient Classifier Boosting and Combining, 

Lecture Notes in Computer Science, p.p. 262-265. 

 https://doi.org/10.1007/978-3-642-33347-7_28 

[12] L. Yu-Ting, L. Tie-Yan, Q. Tao, M. Zhi-Ming, L. 

Hang (2007), Supervised rank aggregation, 

Proceedings of the 16th international conference on 

World Wide Web - WWW ’07, p.p. 481–490. 

 https://doi.org/10.1145/1242572.1242638 

[13] K. Veningston, R. Shanmugalakshmi (2012), 

Enhancing personalized web search re-ranking 

algorithm by incorporating user profile, Third 

International Conference on Computing, 

Communication and Networking Technologies 

(ICCCNT'12). 

 https://doi.org/10.1109/icccnt.2012.6396036 

[14] P.A. Chirita, W. Nejdl, R. Paiu, C. Kohlschütter 

(2005), Using ODP metadata to personalize search, 

Proceedings of the 28th annual international ACM 

SIGIR conference on Research and development in 

information retrieval - SIGIR '05, p.p. 178--185. 

 https://doi.org/10.1145/1076034.1076067 

[15] T. Nasrin, H. Faili (2016), Automatic Wordnet 

Development for Low-Resource Languages using 

Cross-Lingual WSD, Journal of Artificial 

Intelligence Research, Volume 56, p.p. 61–87. 

 https://doi.org/10.1613/jair.4968 

[16] Y. Rasolofo, D. Hawking, J. Savoy (2003), Result 

Merging Strategies for a Current News 

MetaSearcher, Information Processing & 

Management, No 39(4), p.p. 581–609. 

 https://doi.org/10.1016/s0306-4573(02)00122-x 

[17] P.J. Angeline (1994), Genetic programming: On the 

programming of computers by means of natural 

selection, Biosystems, MIT Press Cambridge, p.p. 

69-73. 

 https://doi.org/10.1016/0303-2647(94)90062-0 

[18] Q. Tao, L.T. Yan, X. Jun, L. Hang (2010), LETOR: 

A benchmark collection for research on learning to 

rank for information retrieval, Information Retrieval, 

Volume 13, No. 4, p.p. 346–374. 

 https://doi.org/10.1007/s10791-009-9123-y 

[19] C. Zhai, J. Lafferty (2001), A study of smoothing 

methods for language models applied to Ad Hoc 

information retrieval, Proceedings of the 24th annual 

international ACM SIGIR conference on Research 

and development in information retrieval - SIGIR 

’01, p.p. 334–342. 

 https://doi.org/10.1145/383952.384019 

[20] T.G. Lam, T.H. Vo, C.P. Huynh (2015), Building 

Structured Query in Target Language for 

Vietnamese – English Cross Language Information 

Retrieval Systems, International Journal of 

Engineering Research & Technology (IJERT), 

Volume 4, No. 04, p.p. 146–151.  

 https://doi.org/10.17577/ijertv4is040317

 

 

  



242 Informatica 43 (2019) 235–241 V.T. Hung  

 


